
Diagnosis of GH deficiency

Abdulmoein Al-Agha, FRCPCH (UK)

Professor & Head of Pediatric Endocrinology,

King Abdulaziz University Hospital,

www.aagha.kau.edu.sa

Objectives

- Introduction of short stature.
- Indications of GHD investigations?
- GH testing:
 - Physiological.
 - Pharmacological.
- Newer strategies for assessment of GH status (using GHRH).
- Sex steroid priming for GH provocative tests.
- The IGF/ IGFBP system in childhood.
- International Criteria for the diagnosis of GHD.

GH Gene

- The human genome contains five GH-related genes:
 - human growth hormone (hGH).
 - human chorionic growth prolactin-A.
 - human chorionic growth prolactin-B.
 - human chorionic growth prolactin-like.
 - human auxin variant.
- They have the same transcriptional direction but are separated by a 6-13 kb long gene interval.
- The five genes have about 90- 99% sequence homology, and each gene contains 5 exons and 4 introns.
- The five genes are grouped together to form a gene cluster, which is located on the long arm q22-24 of chromosome 17.

Physiological secretion of GH

- GH is secreted in a pulsating manner, and its secretion has fluctuation, with the largest change range at night and the most vigorous secretion at puberty, and then gradually decreases with the increase of age.
- The secretion of growth hormone in pituitary gland is controlled by two hypothalamic peptides: GH releasing hormone (GHRH) and somatotropin release inhibiting factor (SRIF).
- GHRH is the main regulatory factor of GH, which promotes the transcription and release of GH gene.
- Somatostatin inhibits the secretion of growth hormone by inhibiting the growth nutrition response of growth hormone to GHRH.
- The third factor is Ghrelin, which stimulates growth hormone secretion, although its role in physiological regulation of growth hormone secretion is controversial.

Growth Hormone Functions

- Human growth hormone has a wide range of physiological functions.
- HGH mainly affects the growth, metabolism and differentiation of cells by affecting the growth axis of GH-IGF1, promotes protein synthesis.
- Increase Muscle Strength.
- The release of growth hormones is crucial to regulating bone growth, especially during puberty.
- Increased height in childhood is one of the most important roles of growth hormone.
- GH activates the MAPK/ERK pathway by binding to receptors on target cells and stimulates the division and proliferation of chondrocytes.
- Human growth hormone speeds bone regeneration, making it a key part of bone healing.
- HGH can promote the breakdown of fat in animals.
- Impaired secretion of human growth hormone will result in loss of lipolytic function.
- Insulin resistance and visceral/abdominal obesity are common in adults with hormonal growth defects.
- Human growth hormone can play a therapeutic role in helping obese people lose weight.

Growth Hormone Functions

- Studies have shown that growth hormone deficiency can alter lipoprotein metabolism and increase the risk of cardiovascular disease.
- Growth hormone plays a vital role in mental and emotional health and maintaining high energy levels.
- Adults with growth hormone deficiency are more likely to suffer from depression.
- Studies have shown that growth hormone therapy in adults with growth hormone deficiency can improve their cognitive function and mood.
- Growth hormone can regulate immune function, increase thymocyte activity, affect B cell development and function, and enhance NK killing activity.
- Growth hormone is involved in the development, differentiation and functional integration of brain neurons.
- Numerous studies have shown that growth hormone can stimulate the regeneration of neurons, astrocytes, endothelial cells and oligodendrocytes, as well as the formation of myelin sheath and dendritic diversity.

Indications of GH stimulation test

- Standing height > 2 SD below the mean for chronological age, sex & ethnic background.
- Growth velocity < 5 cm / year.
- Children with decelerating growth even they are still on normal percentiles.
- Children with delayed BA.
- Children who have hypothalamic-pituitary dysfunction (e.g., microphallus, septo-optic dysplasia, intracranial tumor, history of cranial irradiation).
- Children who have deficits in other hypothalamic- pituitary hormones (congenital or acquired).

GH testing

- Physiological
- Pharmacological

Growth Hormone physiological secretion

- GH is a single chain polypeptide of 191 amino acid residues with two disulphide bridges.
- Secreted by the anterior pituitary gland under the control of GHRH, somatostatin & Ghrelin.
- GH is secreted in approximately 8 peaks /day with low basal levels in between these pulses.
- Nearly 50 % of the daily GH secretion occurs during the early hours of the night following the onset of deep sleep.
- Various pharmacological & physiological factors are potent stimulators of GH secretion:
 - Exercise, stress, high protein meal & prolonged fasting.

The IGF system in childhood

- The IGFs are related GH-dependent peptide factors believed to mediate many of the anabolic and mitogenic actions of GH.
- The serum level of the major GH-dependent peptide IGF-1 is stable during the day, due mainly to the complexing of IGF peptides with a family of IGF-binding proteins (IGFBPs).
- The potential for assessing GH status with a single estimation of the circulating IGF-1 level proved attractive and gave rise to the hope that eventually dynamic GH provocation tests may become unnecessary.

- Children & adolescents with variety of illnesses & metabolic disorders have altered circulating IGF-1 & IGFBP levels.
- Exogenous obesity, anorexia nervosa, celiac disease, leukemia, other types of cancer & GH deficiency, this axis can be altered.
- Some reported cases of children with non- detectable levels of circulating IGF-1 that yet normal height and growth velocity, or with non-detectable levels of GH yet normal growth & IGF-1 levels, raises many questions marks.
- Additional problems remain, including lack of specificity.
- The IGF-1 level is influenced markedly by age & pubertal development.
- Use of age & puberty-corrected IGF-I values improves the diagnostic use of IGF-1.
- Low concentrations of IGF-I occur in normal children < 5 years of age.
- To have better use of IGF-1 in the screening test, should be done along with IGFBP3.

IGFBPs

- Of the six known IGFBPs, IGFBP-3 is normally the major serum carrier of IGF peptides.
- IGFBP-3 circulates as part of a ternary complex consisting of IGFBP-3,
 IGF peptide & acid-labile subunit.
- Both acid-labile subunit & IGFBP-3 are GH dependent.
- Age dependency of IGFBP-3 is less striking than for IGF-1.
- Similarly, the influence of nutritional status on IGFBP-3 levels is less than for IGF-1 level.
- Low IGF-1 & IGFBP-3 concentrations are reliable guides to the diagnosis of severe GHD, providing the investigator the alternative possibilities of malnutrition, hypothyroidism, liver disease & GH insensitivity.

GH secretion physiological assessment

- GH secretion assessment by physiological circumstances e.g., exercise test, 24-h GH profiling & urinary GH estimation in the diagnosis of GHD.
- The exercise test is safe, simple to perform as an outpatient procedure and inexpensive.
- Unfortunately, an absent GH response to exercise may occur in up to 1/3 of normal prepubertal children (i.e., 33% false positive).
 - The exercise test, however, is no longer used in clinical practice.

Pharmacological GH testing

GH provocation testing

- There is considerable variability in the different types of assay used to measure GH, so each laboratory needs to set its own threshold for defining GHD.
- This adds to the difficulty & variability in the diagnosis of GHD worldwide.
- Generally, a peak GH response of < 20 mU/L or < 10ng/ml is considered evidence of GHD.
- There are also, false positive & negative results with any of these tests so that "normal" children with normal growth patterns can fail to have good GH response on single agent of pharmacological testing

- The first established pharmacological stimulus introduced for assessment of GH status was insulin tolerance test (ITT).
- Advantages of this test include:
 - ACTH-adrenal axis can be assessed at the same time.
 - Considered to be a powerful stimulus to GH release.
 - Induces moderate hypoglycemia, which is sufficient to elicit maximal GH responses.
- The main disadvantages include:
 - Lack of normative data in children, a characteristic it shares with many other pharmacological tests.
 - Unpleasant nature of the test, which in inexperienced hands is frankly dangerous.

- Other pharmacological stimuli were introduced afterward including:
 - L-dopa, Arginine, glucagon, propranolol, Clonidine, GHRH & Pyridostigmine.
- A variety of combinations of these tests has been used.
- In some centers, two provocative stimuli are administered sequentially or in combination.
- Combination approach may be time-saving & more economical.
- No evidence to suggest, the results are more meaningful if the tests were performed in combination rather than individually.


Assessment of GH status (using GHRH)

- The effects of the commonly used provocative tests of GH release, such as arginine, clonidine & ITT, are mediated through activation of α receptors in the hypothalamus.
- The availability of GHRH provides strong means of assessing the secretory capacity of the pituitary somatotroph directly.
- The use of GHRH in combination with substances that act via inhibition of endogenous somatostatin, such as pyridostigmine (cholinesterase inhibitor) & arginine, has been explored to provoke a much greater GH response than other agents used in GH combined stimulation tests.

International Criteria of GHD

- Standing height >2 SD below the mean for chronological age, sex & ethnicity.
- GV ≤ 4 cm/year (prepubertal).
- BA ≥ 2 years behind CA.
- Low IGF-1 & BP3.
- Subnormal GH secretion in response to at least two provocative stimuli when sampled over several hours.
- Increased IGF1 levels after few days of GH treatment.
- Increased growth velocity after few months of GH treatment.

