Pediatrics Metabolic Bone Disorders with focus on Hypophosphatasia (HPP)

Dr Ahmed H Eltayb Medical Affairs Manager

Rickets

- Rickets is a disorder of growth plate mineralization and ossification, in which bones are weakened due to abnormal calcium metabolism
- Can be inherited or acquired:
 - Lack of dietary vitamin D leads to vitamin D deficiency rickets
 - X-linked hypophosphatemia (XLH), or vitamin D-resistant rickets

Clinical manifestations:

- Bowed legs (pictured)
- Misshaped skulls
- Low calcium and phosphorus levels
- Increased PTH levels
- Increased ALP levels

 Nutritional vitamin D deficiency rickets is treated with vitamin D and calcium supplementation.

XLH

- XLH is a type of rickets characterized by excessive loss of phosphate unrelated to calcium levels
 - Caused by a mutation in the phosphate-regulating gene (PHEX)
 - Leads to impaired renal tubular reabsorption of phosphate

Clinical Manifestations:

- Growth retardation (short stature)
- Bowed legs
- Lower extremity insufficiency fractures
- Arthritis and Osteomalacia (adults)
- Low blood phosphate and vitamin D
- Raised urine phosphate
- Raised serum ALP in children
- Normal serum calcium

XLH is treated with Vitamin D metabolites (calcitriol) and phosphate

Osteogenesis Imperfecta

- Osteogenesis imperfecta or "brittle bone disease" is a genetic condition characterized by fragile bones that break easily
 - OI is caused by a mutation in the type I collagen genes, affecting the body's normal production of collagen leading to fragile bones

Clinical manifestations:

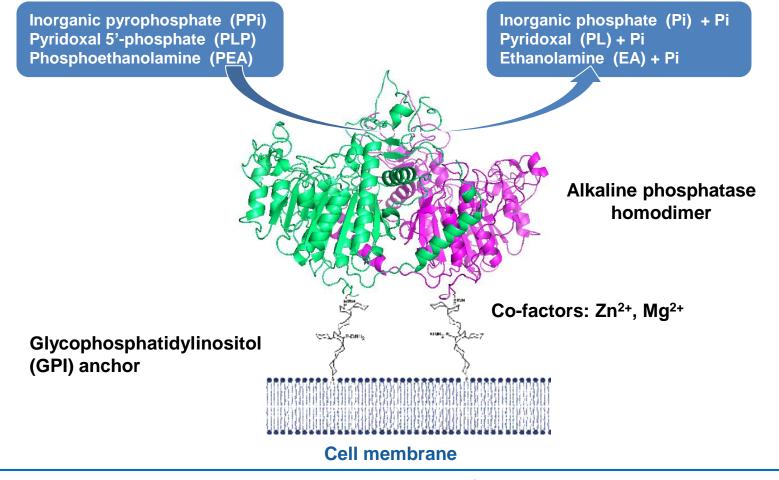
- Short stature
- Blue sclerae (pictured)
- Dentinogenesis imperfecta
- Wormian bones
- Hearing loss
- Osteopenia

There is no cure for OI, but treatment focuses on:

- Minimizing fractures
- Maximizing mobility, function, general health

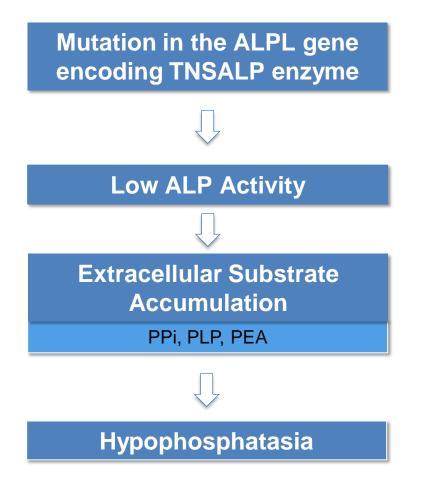
Bisphosphonates are prescribed for OI

Hypophosphatasia¹

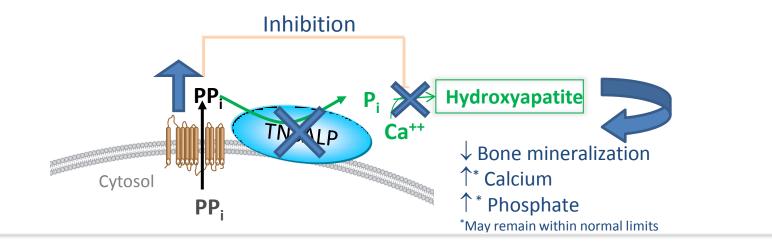

- Hypophosphatasia (HPP) is a rare metabolic disease caused by inactivating mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP).
- The biological hallmark of HPP is low TNSALP activity.
- First described by Rathbun (1948) in 9 weeks old infant²

Objectives :

- Review HPP pathophysiology and mechanism of disease
- Review the various forms of HPP as classically defined
- Review the clinical manifestations of HPP
- Highlight the importance of accurate diagnosis

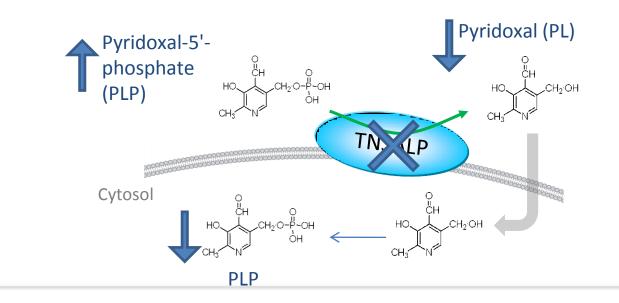

The tissue-nonspecific alkaline phosphatase (TNSALP)^{1,2,3}

Key substrates



Mutations in the catalytic domain or other sites within the TNSALP protein can lead to decreased TNSALP activity and HPP

Mechanism of Disease¹



HPP Pathophysiology: Bone^{1,2}

- During normal bone mineralization, TNSALP dephosphorylates inorganic pyrophosphate (PPi) on osteoblast membranes, producing inorganic phosphate (Pi).
 - Pi and Ca++ form hydroxyapatite crystals
- In HPP, low TNSALP activity leads to extracellular accumulation of PPi
 - PPi is a potent inhibitor of bone mineralization

HPP Pathophysiology: CNS^{1,2,3}

- Pyridoxal-5'-phosphate (PLP) is the active form of vitamin B6
- In normal circumstances TNSALP dephosphorylates PLP, producing pyridoxal (PL)
 - PL crosses the cell membrane and is re-phosphorylated into PLP
 - Intracellular PLP is involved in neurotransmitter synthesis (e.g. GABA, dopamine, serotonin, etc.)
- PLP deficiency in the brain may result in seizures¹

Genetics of HPP

The gene for TNSALP is located on the short arm of chromosome 1 (1p36.1-34)¹

- 12 exons over approximately 50kb
- At least 280 distinct mutations have been described²

 Missense mutations 	75%	 Nonsense mutations 	4%
 Small deletions 	11%	 Small insertions 	2%
 Splicing mutations 	6%	- Other	2%

- Prevalence of specific genetic mutations is higher in some populations³
 - Canada (Manitoba Mennonites) c.1001G > A Europe -c.571G > A
 - United States c.1133A >T

- Japan -c.1559delT
- Inheritance may be either autosomal dominant or autosomal recessive⁴
 - Perinatal or infantile HPP nearly always results from autosomal recessive inheritance
 - Childhood, adult and odontohypophosphatasia may result from autosomal dominant or autosomal recessive inheritance
- There can be considerable variability in the presentation/severity of HPP among siblings, even those who share the same mutation(s)⁴

Forms of Hypophosphatasia

HPP is classically described as having the following clinical forms ^{1,2,3}

Disease Form	Age at First Signs/Symptoms		
Perinatal	In-utero and at birth		
Infantile	< 6 months		
Childhood/Juvenile	≥ 6 months – 18 years		
Adult	≥ 18 years		
Odontohypophosphatasia	Any age Only clinical abnormality is dental disease		
Prenatal benign	In utero Postnatal course ranges significantly from infantile form to odontohypophosphatasia		

There is increasing awareness that⁴

- These definitions are somewhat arbitrary
- There is a spectrum of severity both across and within these categories

Prevalence and Incidence of HPP¹⁻⁶

- Prevalence and Incidence rates for HPP are not well characterized
- Studies to date are primarily focused on severe (perinatal & infantile) HPP
- Methods and populations differ greatly
- Most commonly referenced rates are:
 - 1:100,000 live births in Toronto, based on the birth rate locally for Ontario, Canada
 - 1:300,000 in France, based on molecular diagnosis during 2000-2009.
- Additional reports include:
 - 1:300,000-500,000 (incidence in Japan)
 - 4:500,000 (incidence in Germany)
 - 1:538,000 (prevalence in Europe)
- Data related to founder mutations:
 - 1:2500 among the Mennonite population in Manitoba, Canada (c.1001G > A)
 - 1:900,000 prevalence of a founder mutation in Japan (c.1559delT)
- All data supports a classification of HPP as a rare (Manitoba Mennonite) or ultrarare disease

Systemic Manifestations of Low TNSALP Activity Overview

Presentation and severity of HPP varies among patients

SKELETAL^{1,2,4-11, 20-22}

- Hypomineralization
- Craniosynostosis
- Rickets, skeletal deformities
- Osteomalacia
- Fractures
 - -Non-traumatic
 - -Recurrent
 - -Non-healing
- Bone pain
- Chronic bone inflammation
- Short stature

RESPIRATORY^{1,10,12-14}

- Respiratory failure
- Respiratory insufficiency requiring support

MUSCULAR^{1,3,4,19}

- Hypotonia
- Non-progressive proximal myopathy
- Muscle pain
- Immobility requiring assistive device (e.g., cane, crutches, walker, wheelchair)
- Delayed or missed motor milestones

NEUROLOGIC^{1,2,}

- Seizures
- Increased intracranial pressure

RENAL^{6,10,12,15,16,23}

Nephrocalcinosis

RHEUMATOLOGIC¹⁷

- Chondrocalcinosis
- CPPD* deposition
- Calcific periarthritis
- Pseudogout
- Joint pain

*calcium pyrophosphate dihydrate

DENTAL^{5,20}

- Premature loss of teeth
- Poor dentition

OTHER5,18,19

- Hypercalcemia⁺
- Hypercalciuria⁺
- Failure to thrive
- [†]May remain within normal limits

1. Balasubramaniam, S. (2010); 2. Collmann, H. (2009); 3. Seshia, S. (1990); 4. Beck, C. (2011); 5. Whyte, M. (2012); 6. Barvencik, F. (2011); 7. Coe, J. (1986); 8. Kozlowski, K. (1976); 9. Moulin, P. (2009); 10. Whyte, M. (2012); 11. Weinstein, R. (1981); 12. Baumgartner-Sigl S. (2007); 13. Silver, M. (1988); 14. Teber, S. (2008); 15. Mohn, A. (2011); 16. Eade, A. (1981); 17. Chuck, A. J. (1989); 18. Whyte, M. (2012); 19. Seefried L. (2014); 20. Caswell, A. (1991); 21. Berkseth, K. E. (2013); 22. Schlesinger, B. (1954); 23. Auron, A. (2005)

Systemic Manifestations of Low TNSALP Activity Perinatal/Infantile (first symptoms at birth to < 6 months)

Presentation and severity of HPP varies among patients

SKELETAL^{1,2,4-11, 20-22}

- Hypomineralization
- Craniosynostosis
- Rickets, skeletal deformities
- Osteomalacia
- Fractures
 - -Non-traumatic
 - -Recurrent
 - -Non-healing
- Bone pain
- Chronic bone inflammation
- Short stature

RESPIRATORY^{1,10,12-14}

- Respiratory failure
- Respiratory insufficiency requiring support

MUSCULAR^{1,3,4,8,19,20}

- Hypotonia
- Non-progressive proximal myopathy
- Muscle pain
- Immobility requiring assistive device (e.g., cane, crutches, walker, wheelchair)
- Delayed or missed motor milestones

NEUROLOGIC^{1,2}

- Seizures
- Increased intracranial pressure

RENAL^{6,10,12,15,16,23}

Nephrocalcinosis

RHEUMATOLOGIC¹⁷

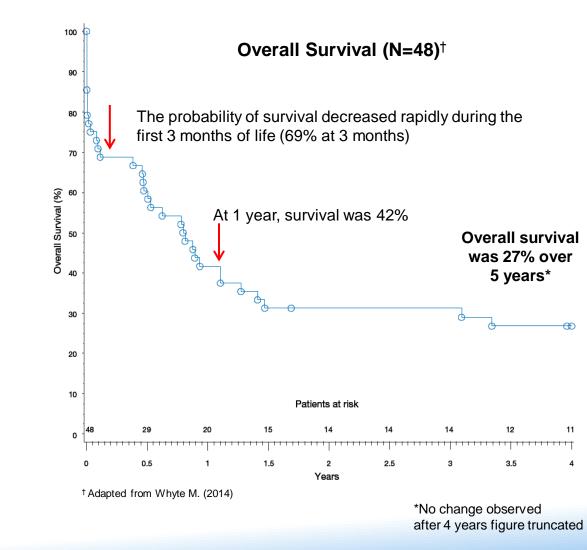
- Chondrocalcinosis
- CPPD* deposition
- Calcific periarthritis
- Pseudogout
- Joint pain

*calcium pyrophosphate dihydrate

DENTAL^{5,8,20}

- Premature loss of teeth
- Poor dentition

OTHER^{5,18,19}


- Hypercalcemia⁺
- Hypercalciuria⁺
- Failure to thrive

[†]May remain within normal limits

1. Balasubramaniam, S. (2010); 2. Collmann, H. (2009); 3. Seshia, S. (1990); 4. Beck, C. (2011); 5. Whyte, M. (2012); 6. Barvencik, F. (2011); 7. Coe, J. (1986); 8. Kozlowski, K. (1976); 9. Moulin, P. (2009); 10. Whyte, M. (2012); 11. Weinstein, R. (1981); 12. Baumgartner-Sigl S. (2007); 13. Silver, M. (1988); 14. Teber, S. (2008); 15. Mohn, A. (2011); 16. Eade, A. (1981); 17. Chuck, A. J. (1989); 18. Whyte, M. (2012); 19. Seefried L. (2014); 20. Caswell, A. (1991); 21. Berkseth, K. E. (2013); 22. Schlesinger, B. (1954); 23. Auron, A. (2005)

Mortality: Perinatal and Infantile HPP¹⁻⁵

- Perinatal HPP is characterized by extreme hypomineralization
 - survival is rare^{1,2}
- In a mixed severe perinatal/infantile HPP population overall mortality was 73% over 5 years (n=48)⁵
- Respiratory failure is the most common cause of death in infants^{1,2,4}

Systemic Manifestations of Low TNSALP Activity Juvenile/Childhood (first symptoms > 6 months to 18 y/o)

Presentation and severity of HPP varies among patients

SKELETAL^{1,2,4-11,20-22}

- Hypomineralization
- Craniosynostosis
- Rickets, skeletal deformities
- Osteomalacia
- Fractures
 - -Non-traumatic
 - -Recurrent
 - -Non-healing
- Bone pain
- Chronic bone inflammation
- Short stature

RESPIRATORY^{1,10,12-14}

- Respiratory failure
- Respiratory insufficiency requiring support

MUSCULAR^{1,3,4,8,19, 20}

Hypotonia

- Non-progressive proximal myopathy
- Muscle pain
- Immobility requiring assistive device (e.g., cane, crutches, walker, wheelchair)
- Delayed or missed motor milestones

NEUROLOGIC^{1,2,}

- Seizures
- Increased intracranial pressure

RENAL^{6,10,12,15,16,23}

Nephrocalcinosis

RHEUMATOLOGIC¹⁷

- Chondrocalcinosis
- CPPD* deposition
- Calcific periarthritis
- Pseudogout
- Joint pain

*calcium pyrophosphate dihydrate

DENTAL^{5,8,20}

- Premature loss of teeth
- Poor dentition

OTHER5,15, 18,22-23

- Hypercalcemia⁺
- Hypercalciuria⁺
- Failure to thrive

[†]May remain within normal limits

1. Balasubramaniam, S. (2010); 2. Collmann, H. (2009); 3. Seshia, S. (1990); 4. Beck, C. (2011); 5. Whyte, M. (2012); 6. Barvencik, F. (2011); 7. Coe, J. (1986); 8. Kozlowski, K. (1976); 9. Moulin, P. (2009); 10. Whyte, M. (2012); 11. Weinstein, R. (1981); 12. Baumgartner-Sigl S. (2007); 13. Silver, M. (1988); 14. Teber, S. (2008); 15. Mohn, A. (2011); 16. Eade, A. (1981); 17. Chuck, A. J. (1989); 18. Whyte, M. (2012); 19. Seefried L. (2014); 20. Caswell, A. (1991); 21. Berkseth, K. E. (2013); 22. Schlesinger, B. (1954); 23. Auron, A. (2005)

Systemic Manifestations of Low TNSALP Activity Adult (first symptoms > 18 y/o)

Presentation and severity of HPP varies among patients

SKELETAL^{1,2,4-11,20-22}

- Hypomineralization
- Craniosynostosis
- Rickets, skeletal deformation
- Osteomalacia
- Fractures
 - -Non-traumatic
 - -Recurrent
 - -Non-healing
- Bone pain
- Chronic bone inflammation
- Short stature

RESPIRATORY^{1,10,12-14}

- Respiratory failure
- Respiratory insufficiency requiring support

MUSCULAR^{1,3,4,8,19,20}

- Hypotonia
- Non-progressive proximal myopathy
- Muscle pain
- Immobility requiring assistive device (e.g., cane, crutches, walker, wheelchair)
- Delayed or missed motor milestones

NEUROLOGIC^{1,2,}

- Seizures
- Increased intracranial pressure

RENAL^{6,10,12,15,16,23}

Nephrocalcinosis

RHEUMATOLOGIC¹⁷

- Chondrocalcinosis
- CPPD* deposition
- Calcific periarthritis
- Pseudogout
- Joint pain

*calcium pyrophosphate dihydrate

DENTAL^{5,8,20}

- Tooth loss
- Poor dentition

OTHER5,18,19, 21

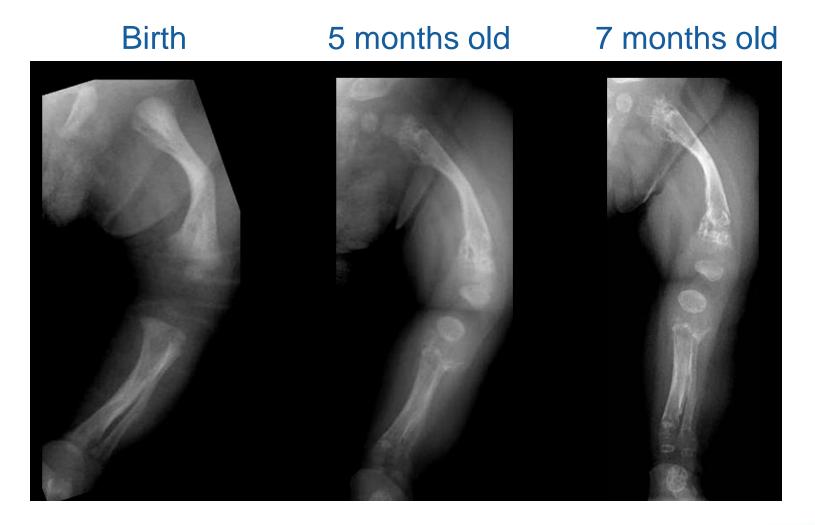
- Hypercalcemia⁺
- Hypercalciuria⁺
- Failure to thrive

[†]May remain within normal limits

1. Balasubramaniam, S. (2010); 2. Collmann, H. (2009); 3. Seshia, S. (1990); 4. Beck, C. (2011); 5. Whyte, M. (2012); 6. Barvencik, F. (2011); 7. Coe, J. (1986); 8. Kozlowski, K. (1976); 9. Moulin, P. (2009); 10. Whyte, M. (2012); 11. Weinstein, R. (1981); 12. Baumgartner-Sigl S. (2007); 13. Silver, M. (1988); 14. Teber, S. (2008); 15. Mohn, A. (2011); 16. Eade, A. (1981); 17. Chuck, A. J. (1989); 18. Whyte, M. (2012); 19. Seefried L. (2014); 20. Caswell, A. (1991); 21. Berkseth, K. E. (2013); 22. Schlesinger, B. (1954); 23. Auron, A. (2005)

Systemic Manifestations of Low TNSALP Activity Odontohypophosphatasia¹⁻⁴

- No evidence of skeletal disease
- Characterized by premature exfoliation of fully rooted teeth
 - Anterior deciduous teeth (incisors) most commonly affected, but may involve all teeth
 - Permanent teeth may also be lost
 - Result of poor mineralization of cementum and loss of periodontal ligament attachment
- Additional features include:
 - Reduced alveolar bone
 - Enlarged pulp chambers and root canals
 - Abnormal enamel and dentin formation
 - Abnormalities in tooth shape, structure, eruption
 - Overall poor dentition including severe dental carries


Differential diagnosis based on lab values

Low ALP is the hallmark of HPP

Lab Values for differential diagnosis ¹						
Disease	HPP	Nutritional rickets	X-linked hypophosphatemic rickets	Osteogenesis imperfecta		
Serum ALP	Ļ	Î	1	normal		
Ca/P	or normal	Ļ	Ļ	normal		
РТН	or normal	t	1	normal		
Vitamin D	normal	↓	1	normal		

While the clinical symptoms and presentation are similar, low ALP activity will distinguish HPP from other bone diseases

Radiographic Findings of HPP¹: Progressive Skeletal Demineralization (example 1)

Radiographic Findings of HPP¹: Progressive Skeletal Demineralization (example 2)

7 weeks old

33 months old

Radiographic Findings of HPP¹: Progressive Skeletal Demineralization (example 3)

7 weeks old

7 weeks old

33 months old

32 months old

Radiographic Findings of HPP: Cranial Vault Abnormality in 2 Patients¹

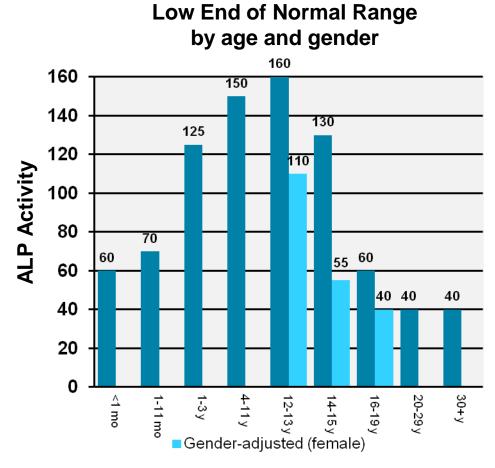
20 months old

33 months old

Radiographic Findings in Children with HPP¹

Radiographic Findings in Patients with HPP Diagnosed as Adults¹

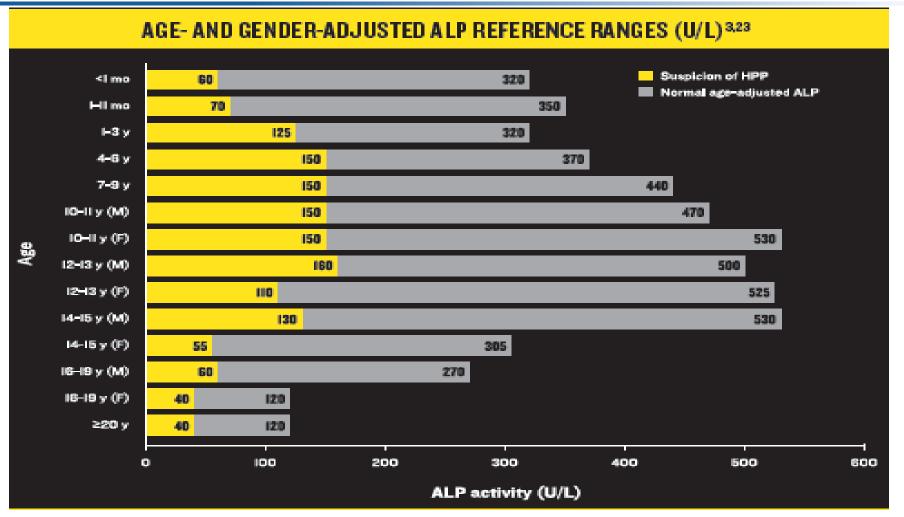
Permission for figure A/B provided by Copyright Clearance Center for License Agreement from Elsevier: License #3323630596981 and #3544461003347


Diagnosis of HPP¹⁻¹⁵

	DI	AGNOSIS OF H	PP				
Hallmark clinical manifestations							
Rickets, osteom fractures,	SKELETAL¹⁻⁹ Rickets, osteomalacia, nonhealing fractures, osteopenia, osteoporosis, craniosynostosis		DENTAL ¹⁰⁻¹² Premature tooth loss, periodontal disease				
	Initial symptoms may also include:						
MUSCULAR ^{2,6,10,13} Weakness, chronic pain, delayed or missed motor milestones	RENAL ^{10,14,15} Nephrocalcinosis, hypercalciuria, severe damage	RESPIRATORY ^{6,16-18} Pulmonary insufficiency, respiratory failure	RHEUMATOLOGIC ^{7,10,11} Chondrocalcinosis, pseudogout, osteoarthropathy	NEUROLOGIC ^{9,17} Seizures, increased intracranial pressure			
	HIGH INDEX OF SUSPICION FOR HPP Evaluate results of age-adjusted ALP activity						
Low ALP activity (age-adjusted) ¹⁹							
	Confirm HPP diagnosis with elevated ALP substrate levels (serum PLP \uparrow or urinary PEA \uparrow) ^{17,19-21}						
The information is intended as educational informat	ion for healthcare professionals.	It does not replace a healthcare	professional's judgment or clinic	al diagnosis.			

1. Whyte, M. (2012); 2. Beck, C. (2011); 3. Barvencik, F. (2011); 4. Whyte, M. (2012, May); 5. Coe, J. (1986); 6. Whyte, M. (2012); 7. Chuck, A. J. (1989); 8. Sutton, R. (2012); 9. Collmann, H. (2009); 10. Rockman-Greenberg, C. (2013); 11. Whyte, M. (1982); 12. Reibel A. (2009); 13. Seshia, S. (1990); 14. Mohn, A. (2011); 15. Fallon, M. (1985); 16. Baumgartner-Sigl S. (2007); 17. Balasubramaniam, S. (2010); 18. Silver, M. (1988); 19. Mornet, E. (1993); 20. Whyte, M. (2001); 21. Whyte, M. (1985)

The Diagnostic Hallmark of HPP is Low ALP Activity¹⁻²


- Normal reference ranges for serum or plasma ALP activity are age-and gender dependent
- Most labs do not flag low ALP activity levels
- When full reference ranges are reported, it is important to note that:
 - Reference values depend on methods
 - Laboratories may vary in their ageand-gender appropriate reference ranges¹

ALP Activity (U/L)

Adapted from ARUP laboratories. Higher normal ALP activity in children and adolescents compared with adults. Typical lowest normal reference values for serum ALP activity in North America. Methodology: quantitative heat inactivation/enzymatic.

ALP varies with Age and Gender

ALP activity is higher in infants, children, and adolescents than in adults

Misdiagnosis May Have Undue Consequences in Patients with HPP¹⁻⁴

Bisphosphonates, high dose vitamin D, and calcium supplements may worsen HPP^{1,3}

- 11-month-old male with HPP¹
 - High-dose vitamin D and calcium supplementation for a presumed diagnosis of nutritional rickets
 - This therapeutic regimen led to rapid and severe deterioration of clinical symptoms resembling vitamin D intoxication
 - Patient developed hypercalcemia, growth failure, and bulging anterior fontanelle
 - Hypercalciuria led to severe renal damage with nephrocalcinosis
 - HPP was diagnosed 5 months after initial misdiagnosis.
- 55-year-old female with HPP³
 - 4 years of Bisphosphonate therapy for a presumed diagnosis of osteoporosis
 - Patient experienced multiple fractures including, atypical subtrochanteric femoral fractures and recurrent metatarsal stress fractures
 - Patient was asymptomatic until soon after her first Bisphosphonate exposure
 - HPP was diagnosed 6 years after initial misdiagnosis

No approved treatment for decades.

Asfotase Alfa (Strensiq) NOW APPROVED.

S/C injection 3 or 6 times a week.

Summary:

- HPP is a rare, inherited metabolic disorder caused by inactivating mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP)^{1,2}
- The biochemical hallmark of HPP is low TNSALP activity^{1,19}
 - Normal range for TNSALP varies by age- and gender
- Clinical manifestations include^{1,2,3,4}
 - Defective mineralization (bone and teeth)^{1,3,4,6,9}
 - Bone deformities, rickets, fractures (multiple, recurrent, poorly healing, non-traumatic), bone pain, and craniosynostosis
 - Premature loss of primary teeth, loss of permanent teeth, overall poor dentition
 - Multiple systemic effects: 1,3,5,10-15,17,20
 - Respiratory compromise, seizures, increased intracranial pressure
 - Non-progressive proximal myopathy, muscle pain, missed motor milestones, immobility requiring wheelchair or other mechanical support
 - Chondrocalcinosis, calcific periarthritis, pseudogout, nephrocalcinosis and/or renal complications
- Presentation/severity of HPP is variable³:
 - Patients of all ages may be severely affected by HPP
 - Presentation among patients with the same mutation(s) can be quite different

^{1.} Rockman-Greenberg, C. (2013); 2. Fraser, D. (1957); 3. Whyte, M. (2008); 4. Anderson, H. C. (1997); 5. Baumgartner-Sigl S. (2007); 6. Whyte, M. (2012); 7. Whyte, M. (1985); 8. Beck, C. (2009); 9. Coe, J. (1986); 10. Balasubramaniam, S. (2010); 11. Collmann, H. (2009); 12. Mohn, A. (2011); 13. Barvencik, F. (2011); 14. Eade, A. (1981); 15. Seshia, S. (1990); 16. Moulin, P. (2009); 17. Weinstein, R. (1981); 18. Whyte, M. (2001); 19. Mornet, E. (1993); 20. Skrinar, A. (2010)

THANK YOU!

Questions