Glucose Monitoring

Abdulmoein Eid Al-Agha, MBBS, DCH, FRCPCH
Professor of Pediatric Endocrinology, King
Abdulaziz University Hospital
, Jeddah, Saudi Arabia

Website: http://aagha.kau.edu.sa

Glucose Monitoring

Evolution of diabetes care.

SMBG.

HbA1c.

CGMS.

Future technology.

Evolution of Diabetes Technology

Glucose Monitoring

First Glucose Meter

Current glucometers

Glucose Monitoring

- Home blood glucose meters measure the glucose in whole blood, while most lab tests measure the glucose in plasma.
- Plasma glucose levels are generally 10%–15% higher than glucose measurements in whole blood.
- Most of the modern meters on the market give results as "plasma equivalent," even though they are measuring whole blood glucose.
- Sample sizes vary from 3 to 0.3 μl.
- Test times almost 5 seconds.

SMBG supplies

SMBG Use & Frequency

- Insulin-treated patients should monitor their blood glucose level varies from person to person.
- At least four times a day.
- Most commonly fasting, before meals, & before bed.
- In addition, patients using insulin can benefit by obtaining postprandial blood glucose readings to help them more accurately adjust their insulin regimen.

Common Errors in SMBG

- Using expired test strips.
- Wrong test strips code.
- Exposing test strips to humidity (leaving bottle open).
- Exposing test strips or glucometer to high temperature (e.g. Leaving in a car).
- Re-using lancets.
- Inaccurate meter test annually compared to lab value.

Common Errors in SMBG

- Too small sample size.
- American Vs Canadian units.
- Low battery.
- Waiting too long before adding blood.
- Not washing hands before taking sample.
- Using rubbing alcohol to wash hands.

Fingertip Testing vs Alternate Site Testing

- Alternate site testing (eg, forearm or thigh) has the advantage of convenience for patients and tends to be less painful than fingertip testing; a disadvantage is that readings may be less accurate if blood glucose levels are rapidly fluctuating (potential lag time); eg, immediately after a meal^[a,b]
- For fingertip testing: using firm pressure at the side of the finger is preferable

a. Saudek CD, et al. JAMA. 2006;295:688-1697.

b. Schrot, RJ, et al. Clin Diabetes. 2007;25:43-49.

Glucometers: Alternate Site Testing

Certain meters allow for testing from "alternative sites" (upper arm, forearm, base of thumb, thigh)

- Limitation: blood in tip of finger shows changes in glucose levels faster than blood in other parts of body
 - ** Inappropriate for glucose concentrations after a meal, insulin or exercise, when these values may be changing rapidly

Limitations to SMBG

- Discomfort with the measurement.
- Motivational/behavioral issues, particularly in the adolescent subgroup.
- In many countries, the cost of SMBG monitoring is very expensive relative to the cost of living.
- Complete dependence of parents on their children to do it in our population.

14-DAY SUMMARY Patient: Report Date: 4/27/2005 9:09 AM Age/Gender: 24 / Female Units: mg/dL (Plasma) Date Range: 4/14/2005 - 4/27/2005 Doctor: ALI A. RIZVI, M.D. Breakfast Lunch Dinner Date Bef. Aft. Meds Carb Ex Bef. Aft. Meds Carb Ex Bef. Aft. Meds Carb Ex Gluc Meds Carb 4/27/2005 4/26/2005 **79** 123 93 4/25/2005 81 72 182 4/24/2005 81 76 80 4/23/2005 82 81 83 4/22/2005 79 108 4/21/2005 **79** 107 106 4/20/2005 78 87 75 4/19/2005 83 74 110 101 4/18/2005 84 152 4/17/2005 **80** 78 132 4/16/2005 87 71 206 4/15/2005 82 120 73 4/14/2005 78 94 109 Average 82 0 99 0 107 93 89 In Target 7% 0% 15% 36% 100% 38% 36 SD 0 35 0 14 #Results 14 0 Results shown in bold italics are out of range. Statistics Glucose Average Target Type: Personal % Within Target: 23 Before Meal Target 90 - 110 # of Glucose Readings: After Meal Target: 67 # of Hypo. Readings: Hypoglycemic 3.36 Standard Deviation: Avg. Readings/Day Glucose Trend **Overall Totals** # of Results 200 -Above Target: Below Target: Within Target: 4/14 4/16 4/18 4/20 4/22 4/24 4/26 4/28 Hypoglycemic: Date __ Overall Target

Age/Gend Date Rang		62 / Male 3/8/2005 -	3/21/2005	
Date	Time	Slot	Result Type	Value
3/21 /2005	6:49 AM	Before Breakfast	Glucose	129
3/21 /2005	5:43 AM	Before Breakfast	Glucose	192
3/21 /2005	3:21 AM	Night	Glucose	173
3/20/2005	2:59 PM	After Lunch	Glucose	109
3/20/2005	9:27 AM	After Breakfast	Glucose	209
3/20/2005	5:01 AM	Before Breakfast	Glucose	216
3/19/2005	8:58 AM	Before Breakfast	Glucose	375
3/19/2005	4:54 AM	Night	Glucose	229
3/18/2005	2:38 PM	After Lunch	Glucose	109
3/18/2005	9:05 AM	After Breakfast	Glucose	98
3/18/2005	4:04 AM	Night	Glucose	117
3/17/2005	3:08 PM	After Lunch	Glucose	201
3/17/2005	3:22 AM	Night	Glucose	189
3/16/2005	2:54 PM	After Lunch	Glucose	94
3/16/2005	10:53 AM	After Breakfast	Glucose	66 *
3/16/2005	6:40 AM	Before Breakfast	Glucose	200
3/16/2005	5:39 AM	Before Breakfast	Glucose	295
3/16/2005	3:50 AM	Night	Glucose	197
3/15/2005	3:06 PM	After Lunch	Glucose	178
3/15/2005	8:59 AM	Before Breakfast	Glucose	207
3/15/2005	5:46 AM	Before Breakfast	Glucose	173
3/14/2005	9:16 PM	After Dinner	Glucose	149
3/14/2005	3:59 PM	After Lunch	Glucose	257
3/14/2005	10:06 AM	After Breakfast	Glucose	307
3/14/2005	6:43 AM	Before Breakfast	Glucose	241
3/14/2005	5:50 AM	Before Breakfast	Glucose	256
3/14/2005	3:55 AM	Night	Glucose	118
3/13/2005	6:07 PM	Before Dinner	Glucose	109
3/13/2005	4:13 PM	After Lunch	Glucose	78
3/13/2005	11:44 AM	Before Lunch	Glucose	153

DATA

Meter Downloads and Data Management Systems

Date Breakfast			Lunch				Dinner					Night		Comments					
Date	Bef.	ef. Aft.	Meds	Carb	Other	Bef.	Aft.	Meds	Carb	Other	Bef.	Aft.	Meds	Carb	Other	Gluc	Meds	Carb	Comments
1/11/2005							225									60*			
1/10/2005		294					182					91				165			
1/9/2005	301					121	200												
1/8/2005	128	238																	
1/6/2005	176						58*					112							
1/6/2005	81																		
1/5/2005	157	87																	
1/4/2005	275	187					67*												
1/3/2005							170												
1/2/2005	245																		
1/1/2005	199	213																	
2/31/2004	224																		
2/30/2004	153																		
Average	194	204				121	150				0	102				113		ļ	
In Target	0%	0%				0%	0%				0%	100%				0%		ļ	
SD	68	76				0	71				0	15				74		ļ	
#Results	10	5				1	6				0	2				2			

Meters
with Builtin Data
Analysis

Graph by Time of Day

HbA1c

History of Hemoglobin A₁c

1978 - Assays commercially available.

1988 – ADA recommends routine testing.

Currently > 30 glycohemoglobin assay methods are available:

- immunoassays
- ion-exchange HPLC
- boronate affinity HPLC

A1C Goals for Children

young age group
$$< 6$$
 yr. $= < 8 - 8.5$ %

$$6 - 11 \text{ yr.} = <7.5\%$$

$$12 - 20 \text{ yr.} = <7.0\%$$

A1c Derived Average Glucose (ADAG) Study and eAG

Translating the A1c assay into estimated average glucose Diabetes Care, <u>August 2008</u>

- Increased accuracy of HbA1c in reflecting the true average glycemia
- Results reported as A1cderived average glucose (in mmol and mg/dl) or "estimated average glucose", eAG

A1C	eAG					
%	mg/dl	mmol/l				
6	126	7.0				
6.5	140	7.8				
7	154	8.6				
7.5	169	9.4				
8	183	10.2				
8.5	197	11.0				
9	212	11.8				
9.5	226	12.6				
10	240	13.4				

Non – invasive glucose monitoring

Glucowatch

Results are affected by sweating, hair with almost 20 minutes lag as well sensors have to be changed every 20 minutes, with high costs.

- Iontophorèse inverse
- Etalorinage 1/j
- Durée: **12**h
- 97% corrélation Bo
- **20 min** délai réponse

CGMS

Continuous Glucose Monitoring System

- test glucose in the IF every few minutes for up to 7 days
- alarm system warns if glucose rapidly changes
- real time results

Continuos Glucose Monitoring in the Clinical Setting: How to perform it?

- Monitoring of SC interstitial glucose is the current way to approach blood glucose.
- Enzymatic sensors using Glucose Oxidase are the currently used sensing systems.
- All are at least minimally-invasive.
- They allow retrospective ('Holter-style') or 'On-line' monitoring.
- Obtained data are blood glucose estimations according to sensor signal calibration.

Needle-type Subcutaneous Glucose Sensor

CGMS®, Medtronic

Guardian RT®, Medtronic

STS®, DexCom

Sensor

- A tiny, sterile, flexible electrode inserted just under the skin
- The sensor measures glucose values every 10th second, up to 5-7 days

Interstitial Fluid Measurement

Interstitial fluid glucose (G2) is almost always comparable with blood glucose (G1)

CGMS

- Minimally invasive sensors use a catheter or a small plastic chip containing a sensor inserted into the subcutaneous space to measure the interstitial glucose.
- They are replaced every 3-7 days and require calibration 2-3 times daily with SMBG.

It's hard being good all the time!

- PREMEAL BG DATA
- GLUCOSE SENSOR

Abbott Freestyle Navigator®

Trends better than just points

Not clue what to do!!

Dexcom sensors

Trend Graphs

Shows the effect of diet, exercise, medication and lifestlye on glucose levels.

Alarms

Protect patients by warning of low and high glucose levels.

Continuous Readings

Help patients take action sooner Up to 288 glucose readings per day, every 5 minutes, 24 hours a day

Glucose Sensor Up to 3-day of continuous use.

Trend Arrows

Point up or down to show the direction and rate of change in glucose levels

Wireless Transmitter

Small, discreet and waterproof

Glucose Monitoring - CGMS

- By analyzing the trends, the patient or the physician can adjust insulin.
- Leads to better glycemic control.

Reports from the web-based *CareLink™ Personal Software*

0:00 0%

Below 70

0:00 0% 1:10 5% 0:00 0% 1:40

6%

Benefits of CGMS

- Increased security from alarms & alerts.
- Immediate feedback look and learn.
- BG trend provides more information than static readings.
- Control & safety.

Limitations of CGMS*

- Interference with glucose readings by sensor can occur with certain substances
 - i.e.gluthatione, ascorbic acid, uric acid, salicylates
- Lag-time for up to 15 minutes when glucose changes rapidly.
- Overall percentage of error near 15%.
 - Guardian Real-Time 17%
 - Dexcom 11-16%
 - Navigator 12-14%

^{*} E. Cenzic, MD and William tamboriane, MD. *A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring.* DIABETES TECHNOLOGY & THERAPEUTICS. Volume 11, September 2009.

Summary

- Home blood glucose meters measure the glucose in whole blood, while most lab tests measure the glucose in plasma.
- Plasma glucose levels are generally 10%–15% higher than glucose measurements in whole blood.
- Most of the modern meters on the market give results as "plasma equivalent," even though they are measuring whole blood glucose.
- Monitoring of SC interstitial glucose is the current way to approach blood glucose.
- In near future, Non-invasive glucose monitoring via implanted nanosensors will be available.

Thanks a "July